Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(41): e202206293, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894150

RESUMO

We present SpeedMixing, a rapid blending technology, as an approach for fast mechanosynthesis and discovery of model pharmaceutical cocrystals through rapid spinning in the absence of bulk solvents and milling/grinding media. Syntheses of pharmaceutical cocrystals based on the active pharmaceutical ingredients (APIs) carbamazepine, dihydrocarbamazepine, and nicotinamide demonstrate SpeedMixing as a method for rapid, scalable, as well as controllable and selective synthesis of cocrystals, cocrystal polymorphs and stoichiomorphs, including the discovery of an unexpected methanol solvate of the archetypal cocrystal of carbamazepine and saccharin, which has eluded extensive screens over 20 years.


Assuntos
Metanol , Sacarina , Carbamazepina/química , Cristalização/métodos , Niacinamida/química , Preparações Farmacêuticas , Sacarina/química , Solventes/química
2.
Chemistry ; 26(8): 1811-1818, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31756261

RESUMO

The "disappearing polymorph" phenomenon is well established in organic solids, and has had a profound effect in pharmaceutical materials science. The first example of this effect in metal-containing systems in general, and in coordination-network solids in particular, is here reported. Specifically, attempts to mechanochemically synthesize a known interpenetrated diamondoid (dia) mercury(II) imidazolate metal-organic framework (MOF) yielded a novel, more stable polymorph based on square-grid (sql) layers. Simultaneously, the dia-form was found to be highly elusive, observed only as a short-lived intermediate in monitoring solvent-free synthesis and not at all from solution. The destabilization of a dense dia-framework relative to a lower dimensionality one is in contrast to the behavior of other imidazolate MOFs, with periodic density functional theory (DFT) calculations showing that it arises from weak interactions, including structure-stabilizing agostic C-H⋅⋅⋅Hg contacts. While providing a new link between MOFs and crystal engineering of organic solids, these findings highlight a possible role for agostic interactions in directing topology and stability of MOF polymorphs.

3.
J Am Chem Soc ; 141(49): 19214-19220, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31747754

RESUMO

Tetratopic porphyrin-based metal-organic frameworks (MOFs) represent a particularly interesting subclass of zirconium MOFs due to the occurrence of several divergent topologies. Control over the target topology is a demanding task, and reports often show products containing phase contamination. We demonstrate how mechanochemistry can be exploited for controlling the polymorphism in 12-coordinated porphyrinic zirconium MOFs, obtaining pure hexagonal PCN-223 and cubic MOF-525 phases in 20-60 min of milling. The reactions are mainly governed by the milling additives and the zirconium precursor. In situ monitoring by synchrotron powder X-ray diffraction revealed that specific reaction conditions resulted in the formation of MOF-525 as an intermediate, which rapidly converted to PCN-223 upon milling. Electron spin resonance measurements revealed significant differences between the spectra of paramagnetic centers in two polymorphs, showing a potential of polymorphic Zr-MOFs as tunable supports in spintronics applications.

4.
ACS Omega ; 4(3): 5486-5495, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459711

RESUMO

We demonstrate the use of ball milling mechanochemistry for rapid, simple, and materials-efficient synthesis of the organic mineral paceite CaCu(OAc)4·6H2O (where OAc- is the acetate ion), composed of coordination polymer chains containing alternating Ca2+ and Cu2+ ions, as well as its cadmium-based analogue CaCd(OAc)4·6H2O. While the synthesis of paceite in aqueous solutions requires a high excess of the copper precursor, mechanochemistry permits the use of stoichiometric amounts of reagents, as well as the use of poorly soluble and readily accessible calcium carbonate or hydroxide reactants. As established by thermochemical measurements, enthalpies of formation of both synthetic paceite and its cadmium analogue relevant to the mechanochemical reactions are highly exothermic. Reactions can also be conducted using accelerated aging, a synthetic technique that mimics geological processes of mineral weathering. Accelerated aging reactivity involving copper(II) acetate monohydrate (hoganite) and calcium carbonate (calcite) provides a potential explanation of how complex organic minerals like paceite could form in a geological environment.

5.
Chem Sci ; 10(18): 4923-4929, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31160963

RESUMO

Rare metal-organic framework (MOF) minerals stepanovite and zhemchuzhnikovite can exhibit properties comparable to known oxalate MOF proton conductors, including high proton conductivity over a range of relative humidities at 25 °C, and retention of the framework structure upon thermal dehydration. They also have high thermodynamic stability, with a pronounced stabilizing effect of substituting aluminium for iron, illustrating a simple design to access stable, highly proton-conductive MOFs without using complex organic ligands.

6.
Philos Trans A Math Phys Eng Sci ; 377(2149): 20180221, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31130097

RESUMO

The recent discovery of minerals with metal-organic framework (MOF) structures has challenged the view of MOFs as purely synthetic materials. At the same time, the application of geo-inspired synthetic methodologies, such as accelerated ageing and pseudomorphic replication, has enabled a cleaner, more environmentally friendly synthesis of MOFs from mineral-like feedstocks, as well as the assembly of materials with structure controlled at both micro- and meso-scales. These almost concomitant developments have highlighted the previously unknown relationships between geology and MOF chemistry. Here, we outline examples of MOF structures found in minerals, and note geologically inspired approaches to MOF synthesis, as a means to highlight how the emergent geomimetic concepts in MOF chemistry can lead to advances in the design and synthesis of MOFs. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'.

7.
Chem Commun (Camb) ; 54(51): 6999-7002, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29809222

RESUMO

The use of a dodecanuclear zirconium acetate cluster as a precursor enables the rapid, clean mechanochemical synthesis of high-microporosity metal-organic frameworks NU-901 and UiO-67, with surface areas up to 2250 m2 g-1. Real-time X-ray diffraction monitoring reveals that mechanochemical reactions involving the conventional hexanuclear zirconium methacrylate precursor are hindered by the formation of an inert intermediate, which does not appear when using the dodecanuclear acetate cluster as a reactant.

8.
Faraday Discuss ; 203: 441-457, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28731094

RESUMO

We describe the use of dicyanoaurate ions as linear ditopic metal-organic acceptors for the halogen bond-driven assembly of a dichroic metal-organic cocrystal based on azobenzene chromophores. Structural analysis by single crystal X-ray diffraction revealed that the material is a four-component solid, consisting of anticipated anionic metal-organic halogen-bonded chains based on dicyanoaurate ions, as well as complex potassium-based cations and discrete molecules of the crown ether 15-crown-5. Importantly, the structural analysis revealed the parallel alignment of the halogen-bonded chains required for dichroic behaviour, confirming that crystal engineering principles developed for the design of halogen-bonded dichroic organic cocrystals are also applicable to metal-based structures. In the broader context of crystal engineering, the structure of the herein reported dichroic material is additionally interesting as the presence of an ion pair, a neutral azobenzene and a molecule of a room-temperature liquid make it an example of a solid that simultaneously conforms to definitions of a salt, a cocrystal, and a solvate.

9.
Sci Adv ; 2(8): e1600621, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27532051

RESUMO

Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals.


Assuntos
Metais/química , Minerais/química , Compostos Organometálicos/química , Técnicas de Química Analítica , Modelos Moleculares , Oxalatos/química
10.
Chem Commun (Camb) ; 52(29): 5120-3, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26997559

RESUMO

We describe a simple setup for in situ continuous monitoring of vapour-induced transformations of organic solids using a benchtop powder X-ray diffractometer. Proof-of-principle application of this setup to model pharmaceutical cocrystals reveals complex reactivity, transformations of reaction intermediates within minutes, and a simple route to the rarely observed monoclinic form of the pharmaceutical cocrystal of carbamazepine and saccharin.


Assuntos
Preparações Farmacêuticas/química , Difração de Pó/instrumentação , Difração de Raios X/instrumentação , Cristalização , Desenho de Equipamento , Modelos Moleculares , Difração de Pó/métodos , Volatilização , Difração de Raios X/métodos
11.
J Med Chem ; 59(9): 4221-34, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-26619267

RESUMO

Bicyclic chiral scaffolds are privileged motifs in medicinal chemistry. Over the years, we have reported covalent bicyclic prolyl oligopeptidase inhibitors that were highly selective for POP over a number of homologous proteins. Herein, we wish to report the structure-based design and synthesis of a novel class of POP inhibitors based on hexahydroisoindoles. A docking study guided the selection of structures for synthesis. The stereochemistry, decoration, and position within the molecule of the bicyclic scaffolds were assessed virtually. Following the synthesis of the best candidates, in vitro assays revealed that one member of this chemical series was more active than any of our previous inhibitors with a Ki of 1.0 nM. Additional assays also showed that the scaffold of this potent inhibitor, in contrast to one of our previously reported chemical series, is highly metabolically stable, despite the foreseen potential sites of metabolism. Interestingly, computer docking calculations accurately predicted the optimal features of the inhibitors.


Assuntos
Compostos Bicíclicos com Pontes/química , Ácidos Carboxílicos/química , Isoindóis/química , Isoindóis/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Serina Endopeptidases/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Prolil Oligopeptidases , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...